Funder	Project Title	Funding	Institution	
Department of Defense - Autism Research Program	Novel probiotic therapies for autism	\$0	California Institute of Technology	
Department of Defense - Autism Research Program	Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$377,663	Salk Institute for Biological Studies	
Department of Defense - Autism Research Program	Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$315,375	University of California, San Francisco	
Department of Defense - Autism Research Program	Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Massachusetts Institute of Technology	
Department of Defense - Autism Research Program	Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Department of Defense - Autism Research Program	Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Department of Defense - Autism Research Program	Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Department of Defense - Autism Research Program	Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$0	University of Pennsylvania	
Department of Defense - Autism Research Program	Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	University of Texas Health Science Center at San Antonio	
Brain & Behavior Research Foundation	Impact of an autism associated mutation in DACT1 on brain development and behavior	\$45,000	University of California, San Francisco	
Brain & Behavior Research Foundation	Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$0	Duke University	
Brain & Behavior Research Foundation	Adverse prenatal environment and altered social and anxiety-related behaviors	\$45,000	University of Pennsylvania	
Brain & Behavior Research Foundation	Cellular and molecular pathways of cortical afferentation in autism spectrum disorders	\$0	University of Geneva	
Autism Science Foundation	Using induced-pluripotent stem cells to study Phelan McDermid Syndrome	\$40,000	Stanford University School of Medicine	
Autism Science Foundation	Role of astrocytic glutamate transporter GLT1 in fragile X	\$40,000	Tufts University	
Autism Speaks	Mechanism and treatment of ASD related behavior in the Cntnap2 knockout mouse model	\$58,000	University of California, Los Angeles	
Autism Speaks	Novel approaches to enhance social cognition by stimulating central oxytocin release	\$149,852	Emory University	
Autism Speaks	Identifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$137,173	Mount Sinai School of Medicine	
Autism Speaks	Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$150,000	Duke University	
Autism Speaks	Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$48,500	University of North Carolina at Chapel Hill	
Autism Speaks	Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$28,600	Vanderbilt University	
Autism Speaks	Shank3 mutant characterization in vivo	\$0	University of Texas Southwestern Medical Center	

Funder	Project Title	Funding	Institution	
Autism Speaks	Preclinical therapeutic target validation of glutamate receptors in Shank3 models of autism	\$56,900	University of Texas Southwestern Medical Center	
Autism Speaks	Rat knockout models of ASD	\$100,441	Baylor College of Medicine	
Autism Speaks	Integrative system biology of iPSC-induced neurons for identifying novel drug targets	\$55,200	Baylor College of Medicine	
Autism Speaks	Temporally controlled genetic rescue of Shank3 autism model	\$60,000	University of Texas Southwestern Medical Center	
National Institutes of Health	Dissecting the neural control of social attachment	\$764,775	University of California, San Francisco	
National Institutes of Health	Autism iPSCs for studying function and dysfunction in human neural development	\$460,152	Scripps Research Institute	
National Institutes of Health	Insight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$290,087	University of California, San Francisco	
National Institutes of Health	Exploring the neuronal phenotype of autism spectrum disorders using induced pluripotent stem cells	\$366,529	Stanford University	
National Institutes of Health	Effects of chronic intranasal oxytocin	\$568,507	University of California, Davis	
National Institutes of Health	Using induced pluripotent stem cells to identify cellular phenotypes of autism	\$792,000	Stanford University	
National Institutes of Health	Cellular and genetic correlates of increased head size in autism spectrum disorder	\$393,455	Yale University	
National Institutes of Health	Functional analysis of rare variants in genes associated with autism	\$146,625	Yale University	
National Institutes of Health	Oxytocin receptors and social behavior	\$440,363	Emory University	
National Institutes of Health	Training in translational social neuroscience	\$98,163	Emory University	
National Institutes of Health	Characterization of the schizophrenia-associated 3q29 deletion in mouse	\$404,198	Emory University	
National Institutes of Health	The genetic control of social behavior in the mouse	\$342,540	University Of Hawai'i at Manoa	
National Institutes of Health	Mechanisms of stress-enhanced aversive conditioning	\$381,250	Northwestern University	
National Institutes of Health	Roles of oxytocin and vasopressin in brain	\$1,990,068	National Institutes of Health	
National Institutes of Health	Studies of genetic and metabolic disorders, autism and premature aging	\$1,667,480	National Institutes of Health	
National Institutes of Health	Animal models Of neuropsychiatric disorders	\$974,415	National Institutes of Health	
National Institutes of Health	Investigating the role of CNTNAP2 gene in vocal learning in mutant songbirds	\$249,063	University of Massachusetts Medical School	
National Institutes of Health	Serotonin, autism, and investigating cell types for CNS disorders	\$246,794	Washington University in St. Louis	
National Institutes of Health	Identifying therapeutic targets for autism using Shank3-deficient mice (supplement)	\$121,077	Mount Sinai School of Medicine	
National Institutes of Health	Identifying therapeutic targets for autism using Shank3-deficient mice	\$484,667	Mount Sinai School of Medicine	

Funder	Project Title	Funding	Institution
National Institutes of Health	Transgenic and knockout approaches to study protocadherin function	\$228,750	The Ohio State University
National Institutes of Health	Modeling the serotonin contribution to autism spectrum disorders	\$236,532	Vanderbilt University Medical Center
National Institutes of Health	Tooth pulp as a source for neuronal precursor cells to study neurogenetic disorders	\$187,344	University of Tennessee Health Science Center
National Institutes of Health	Neurobiological signatures of social dysfunction and repetitive behavior	\$395,672	Vanderbilt University Medical Center
National Institutes of Health	Striatal synaptic abnormalities in models of autism	\$397,396	University of Texas Southwestern Medical Center
National Institutes of Health	Neuroligin function in vivo: Implications for autism and mental retardation	\$388,575	University of Texas Southwestern Medical Center
National Institutes of Health	Animal model of speech sound processing in autism	\$283,249	University of Texas at Dallas
National Institutes of Health	Novel genetic models of autism	\$337,875	University of Texas Southwestern Medical Center
National Institutes of Health	Novel genetic models of autism (supplement)	\$99,773	University of Texas Southwestern Medical Center
National Institutes of Health	OCT blockade to restore sociability in 5-HT transporter knock-out mice	\$74,250	University of Texas Health Science Center at San Antonio
National Institutes of Health	The genetic and neuroanatomical origin of social behavior	\$391,250	Baylor College of Medicine
National Institutes of Health	Patient iPS cells with copy number variations to model neuropsychiatric disorders	\$336,050	The Hospital for Sick Children
Simons Foundation	16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Stanford University
Simons Foundation	Quantitative analysis of effect of autism-related genes on behavioral regulation	\$102,000	University of California, San Francisco
Simons Foundation	A probiotic therapy for autism	\$62,500	California Institute of Technology
Simons Foundation	Role of a novel Wnt pathway in autism spectrum disorders	\$300,000	University of California, San Francisco
Simons Foundation	Developing a new model system to study mechanisms of attention control	of \$0 Stanford University	
Simons Foundation	Effect of abnormal calcium influx on social behavior in autism	\$156,250 University of California, San Francisco	
Simons Foundation	16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000 University of California, Davis	
Simons Foundation	Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$79,584	University of California, Los Angeles
Simons Foundation	Behavioral and physiological consequences of disrupted Met signaling	\$400,000	University of Southern California
Simons Foundation	Integrated approach to the neurobiology of autism spectrum disorders	\$0 Yale University	
Simons Foundation	Cerebellar signaling in mouse models of autism	\$125,000	Northwestern University

Funder	Project Title	Funding	Institution	
Simons Foundation	The role of glutamate receptor intereacting proteins in autism	\$312,500	Johns Hopkins University School of Medicine	
Simons Foundation	Studying the neural development of patient-derived stem cells	\$156,250	Johns Hopkins University School of Medicine	
Simons Foundation	Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$156,250	Tufts University	
Simons Foundation	Neural and cognitive mechanisms of autism	\$0	Massachusetts Institute of Technology	
Simons Foundation	Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$294,937	Massachusetts General Hospital	
Simons Foundation	Dissecting the circuitry basis of autistic-like behaviors in mice	\$350,000	Massachusetts Institute of Technology	
Simons Foundation	Synaptic pathophysiology of 16p11.2 model mice	\$125,000	Massachusetts Institute of Technology	
Simons Foundation	Using zebrafish and chemical screening to define function of autism genes	\$0	Whitehead Institute for Biomedical Research	
Simons Foundation	Establishing next-generation tools for quantitative behavioral phenotyping	\$60,000	Harvard Medical School	
Simons Foundation	Perinatal choline supplementation as a treatment for autism	\$62,500	Boston University	
Simons Foundation	Cell type-specific profiling for autism spectrum disorders	\$120,000	Columbia University	
Simons Foundation	16p11.2: defining the gene(s) responsible	\$350,000	Cold Spring Harbor Laboratory	
Simons Foundation	Investigating the effects of chromosome 22q11.2 deletions	\$300,000	Columbia University	
Simons Foundation	Genomic imbalances at the 22q11 locus and predisposition to autism	\$0	Columbia University	
Simons Foundation	Role of cadherin-8 in the assembly of prefrontal cortical circuits	\$155,940	Mount Sinai School of Medicine	
Simons Foundation	PsychoGenics Inc.	\$147,925	PsychoGenics Inc.	
Simons Foundation	The role of SHANK3 in autism spectrum disorders	\$0	Mount Sinai School of Medicine	
Simons Foundation	Role of RAS/RAF/ERK pathway in pathogenesis and treatment of autism	\$0	New York State Institute for Basic Research in Developmental Disabilities	
Simons Foundation	Understanding copy number variants associated with autism	\$125,000 Duke University Medical Center		
Simons Foundation	Role of UBE3A in neocortical plasticity and function	\$77,686	University of North Carolina at Chapel Hill	
Simons Foundation	Small-molecule compounds for treating autism spectrum disorders	\$350,000	University of North Carolina at Chapel Hill	
Simons Foundation	Synaptic and circuitry mechanisms of repetitive behaviors in autism	\$47,041	Massachusetts Institute of Technology	
Simons Foundation	A mouse model for human chromosome 7q11.23 duplication syndrome	\$0	University of Toronto	
Simons Foundation	Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Weizmann Institute of Science	

Funder	Project Title	Funding	Institution
Simons Foundation	Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$79,525	Universidad Miguel Hernandez